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Nature of the many-particle potential in the monatomic liquid state:
Energetics, kinetics, and stability

D. C. Wallace and B. E. Clements
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 9 September 1998!

Molecular-dynamics calculations have been used to explore and characterize the many-particle potential
underlying the motion of particles in the monatomic liquid state. The potential used accurately represents
metallic sodium at the density of the liquid at melt. It is found that the potential surface is composed of a large
number of stable nearly harmonic valleys, and that these can be classified as random, symmetric, or crystalline.
The random valleys cover by far the major portion of configuration space; they are macroscopically uniform,
i.e., they all have the same structural potential and vibrational spectrum; and they all have microscopically
irregular anharmonicity. The symmetric valleys lie at potential energies below the random valleys, but above
the bcc crystalline valley. The symmetric valleys are not macroscopically uniform, but show scatter in their
structural potentials and their eigenvalue spectra, and the symmetric valleys also have microscopically irregular
anharmonicity. The equilibrium states of our system, from zero temperature up to and including the liquid
states, fall into three groups, random, symmetric, and crystalline, according to which class of potential valley
is mainly visited in the system motion. The random states are well separated from the symmetric and crystal-
line states, on the graph of mean potential energy versus temperature. The random states lie on a single line
over the entire temperature range, and they include the liquid states, demonstrating that the random valleys
dominate the statistical mechanics of the liquid. The present results provide detailed confirmation of the
liquid-dynamics Hamiltonian previously used in equilibrium and nonequilibrium calculations. Further, the
liquid-dynamics prediction of near equality of the log moment of the vibrational spectra, for the liquid and
crystal at the same density, is verified here for the example of sodium.@S1063-651X~99!01903-0#

PACS number~s!: 61.20.Ne, 61.20.Ja, 61.20.Gy
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I. INTRODUCTION

The objective of this work is to characterize the man
particle potential underlying the motion of particles in t
classical monatomic liquid state. Our technique is to anal
molecular-dynamics~MD! calculations for a comprehensiv
set of stable and metastable equilibrium states, from z
temperature up to and including the liquid, for a fixed dens
and a fixed interatomic potential. From the theory of liqu
dynamics@1#, one expects certain properties of the poten
surface to be universal for monatomic systems, and th
expectations will guide us in formulating an investigati
strategy.

In liquid-dynamics theory@1#, it is observed that the mea
sured ion-motional specific heat is very nearly 3kB per ion,
for all classical monatomic liquids at melt. From this w
assume that the ions move primarily within one or mo
nearly harmonic valleys in the potential surface.~A valley in
this 3N-dimensional space is our generic term for the nei
borhood of a local minimum in the many-body potential s
face, about which the potential increases in all 3N direc-
tions.! It is also observed that the measured constant-volu
entropy of melting, for normal melting elements@2#, is very
nearly a universal constant valuekBD per ion, whereD
50.80. To interpret this entropy of melting, we need tw
results from statistical mechanics: first, the ions in the cry
move entirely within a single nearly harmonic valley in th
potential surface, and second, the classical entropy per
representing one harmonic valley is 3kB@ ln(T/Q0)11#, where
T is the temperature, andQ0 is the characteristic temperatu
PRE 591063-651X/99/59~3!/2942~13!/$15.00
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determined by the logarithmic moment of the vibrational fr
quencies~defined in Sec. III!. The universal entropy of melt
ing then leads us to conclude~a! that the number of potentia
valleys accessible to the liquid iswN, for N particles, where
lnw5D, and ~b!, the characteristic temperaturesQ0 are
nearly the same for the crystal and the liquid valleys.

In a real monatomic liquid, the physical particles are a
proximately rigid ion cores, which we call simply ‘‘the
ions.’’ The stable equilibrium configuration of ions at th
bottom of a stable many-particle potential valley is called
‘‘structure.’’ Molecular-dynamic calculations have given u
much information about structures in model systems. Fr
the pioneering work of Stillinger and Weber, we know th
amorphous structures exist@3,4#, and that their potential en
ergies lie in a band above the crystalline potential ene
@5–7#. LaViolette and Stump@8# found a wide variety of
structure symmetries, depending on the interatomic poten
and the density. These authors denoted noncrystalline s
tures by the general term ‘‘amorphous.’’ In considering t
motion of ions in monatomic liquids, it became obvious th
one had to subdivide the amorphous structures into
classes, with different expected properties, as follows@1#.

First, structures with a remnant of crystal symmetry,
least among nearest neighbors, are called ‘‘symmetr
structures. The members of this class, though large in n
ber, are stillrelatively few, because of the symmetry restri
tion. Also, since the structure potential@defined in Eq.~3.9!
below# and vibrational frequencies are sensitive to ne
neighbor symmetry, the macroscopic averages of these p
erties will show significant variations over the class of sy
metric structures.
2942 ©1999 The American Physical Society
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Second, structures with highly random near-neighbor
entations are called ‘‘random’’ structures, and their very ra
domness implies properties in contrast with symmetric str
tures. First, for largeN, random structures constitute th
great majority of all the structures, hence they dominate
statistical mechanics of the liquid state. Second, again
largeN, each macroscopic average property is narrowly d
tributed over the class of random structures, i.e., the rand
structures are macroscopically uniform.

Another property of the potential surface often inves
gated by MD calculations is the set of instantaneous nor
modes. These are the eigenvalues and eigenvectors o
potential energy curvature tensor, evaluated at the insta
neous configuration of the system, as it moves in an equ
rium state. The set contains a temperature-dependent lob
negative eigenvalues, called the ‘‘unstable’’ modes. Rahm
Mandell, and McTague@9# estimated the spectrum for a
amorphous system. LaViolette and Stillinger@10# showed
that the mean number of negative eigenvalues incre
strongly with temperature for the crystal, and continues
increase after melting to the liquid. Here, since we exp
each valley to be nearly harmonic@1#, our primary measure
of the potential surface will be the set of ordinary~stable!
normal modes evaluated at the valley bottom~at the struc-
ture!. Beyond this harmonic measure, as we find in Sec.
the number of negative eigenvalues among the instantan
normal modes becomes an indicator of the nature of an
monicity in the potential surface of a single valley.

We have chosen to work with an interatomic potent
that accurately represents metallic sodium. This allows u
state unambiguously that the properties discussed in
work are realistic and not an artifact of the form of the ch
sen potential. ForN atoms in a volumeV, the positions of
the ions arerK , for K51, . . . ,N, and in pseudopotentia
perturbation theory, applicable to nearly-free-electron m
als, the total potentialF takes the form@11,12#

F~$rK%!5V~V!1
1

2 (
K,L

f~ urK2rLu;V!. ~1.1!

V(V) is a large negative potential, which accounts for m
of the metallic binding, andf(r ;V) is an effective ion-ion
potential, which works through the screening electrons.
will fix the volume per atomVA5V/N at the value 278a0

3 ,
which is the volume of liquid sodium at the melting tempe
ture Tm5371 K. At fixed V, V(V) is constant, so we
choose the zero of energy here by settingV(V)50. The
original pair potential@13#, given by pseudopotential theory
and calibrated to the bulk properties of crystalline sodium
T50, is shown in Fig. 1. This potential has long-range~Frie-
del! oscillations, but these give no significant contribution
the statistical mechanics of the liquid state. Therefore,
gain the numerical advantage of a short-range potential,
use a damped potential that smoothly removes the lo
range oscillations. Our damped potential is obtained by m
tiplying the original potential by exp@ 2c(r2rc)

2#, wherec
50.64a0

22 and r c515.0a0 , for all r>15a0 . The damped
potential is also shown in the inset in Fig. 1, and differs fro
the original potential only in the region of the Friedel osc
lations, and only by a magnitude less than 1025 Ry.
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The complete sodium potential in Eq.~1.1! has had re-
markable success in accounting for the properties of meta
sodium. Excellent agreement with experiment was obtai
for the phonon frequencies@13#, for the temperature-
dependent properties of the crystal@14,15#, and of the liquid,
@16#, for properties of the crystal under pressure@17#, and for
the melting temperature as a function of pressure@18#.
Hence, the damped pair potential used here will certai
yield physically realistic results for metallic sodium atVA

5278a0
3 .

The calculations were carried out using the Verlet alg
rithm @19#, for N particles in a cubical box, with periodic
boundary conditions. We usedN5168 for exploratory cal-
culations, N5432 for bcc crystal calculations, andN
5500, 1000, and 3000 for final calculations on noncryst
line states. The MD time step isdt5A2Ma0

3/e2, whereM is
the atomic mass of sodium, ordt57.00310215 s. In the
coming sections, it will be convenient to express the tem
ral evolution of certain physical quantities as a function
the MD iterations, rather than converting to units of tim
The conversion factor is simplydt. A useful reference time
in this study is the mean vibrational period of the particle
In all states we shall study, crystalline and noncrystall
alike, it is approximately 60dt.

The system Hamiltonian is denoted

H5K1F, ~1.2!

K5
1

2 (
K

M vK
2 , ~1.3!

F5
1

2 (
K,L

fKL , ~1.4!

where vK is the velocity of particle K, and fKL
5f(urK2rLu). During an MD run,K(t) andF(t) are fluc-
tuating signals, withK1F5constant. When the system is i
equilibrium, stable or metastable, the time average of a fl
tuating quantity is a physically important measure. We d

FIG. 1. The sodium potentialf(r ) for VA5278a0
3 . The inset

shows the pseudopotential form for the potential used in the w
of Ref. @13# ~ORIGINAL!, which has Friedel oscillations at larger,
and an exponentially damped version of the potential~DAMPED!.
The damped potential is used in our MD calculations.
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2944 PRE 59D. C. WALLACE AND B. E. CLEMENTS
note the equilibrium time average ofF(t) by ^F(t)&, or sim-
ply ^F& when the meaning is obvious. The equilibrium tim
average of the kinetic energy per particle is related to
temperature by

^K/N&5 3
2 kBT. ~1.5!

In Sec. II, the equilibrium states of the system are fou
and are classified into the two groups of random and s
metric, according to their mean potential energies as func
of mean kinetic energy. It is shown that the localization
the system to a small region of configuration space is
vealed in the mean square displacement as function of t
The properties of single potential valleys are examined
Sec. III, where it is found that both random and symme
valleys are stable, that the random valleys have unive
structure potential and eigenvalue spectrum, and that
small anharmonic potential is microscopically irregular
both random and symmetric valleys. In Sec. IV, the me
square displacement in equilibrium states is used to sepa
the motion into diffusive~intervalley! and nondiffusive~in-
travalley! components. Our conclusions are summarized
Sec. V.

II. EQUILIBRIUM STATES OF THE SYSTEM

A. Generating the states

In the course of the MD calculations, we introduce spec
iterations for the purpose of cooling or heating the system
one such iteration, each particle velocity is multiplied by
numberj,

vK→j vK , K51, . . . ,N. ~2.1!

The iteration is cooling when 0<j,1, and heating whenj
.1. Whenj51, the iteration is called simply MD, and whe
this proceeds for an uninterrupted set of iterations it is ca
an MD run. If the heating or cooling iteration is sufficient
gentle, the system can be maintained near equilibrium,
for this condition we useuj21u,1023. The special casej
50 is called a quench. Repeated quenches move the sy
down the potential surface along the path of steepest des

Let us imagine that the many-particle potential surface
composed of a large number of intersecting valleys, and
the system in the liquid state moves very rapidly amo
these valleys. If we cool slowly from the liquid, so that th
system remains near equilibrium, we expect the syst
upon freezing, to settle into a special valley, namely, one
highly crystalline as possible, compatible with the period
boundary conditions. On the other hand, a series of quen
will bring the system down within the valley it happens to
moving through when the quenches are initiated. Hen
quenching gives us the ability to make a statistical samp
of the valleys through which the system moves. If now t
system is cold, and moves near the bottom of a partic
valley, the system will remain in the same valley during
series of heating iterations, provided the heating is su
ciently gentle. Hence, heating gives us the ability to expl
the potential surface of a single many-particle valley, at le
up to its intersection with a neighboring valley.

Figure 2 shows representative curves of the system po
tial ~energy! during a series of quenches from the liqui
e
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followed by MD runs. During the MD, the fluctuating poten
tial initially decreases as the system gains kinetic ener
then it levels off and reaches equilibrium. Sometimes
system stays for awhile in one equilibrium state, then mo
to another equilibrium state. This case is illustrated by
100 quench run shown in Fig. 2. The state with the low
potential shall be referred to as thelower state. In nearly all
the examples observed of a spontaneous change of state
ing an MD run, the system moved to a lower state~as illus-
trated in Fig. 2!. It is convenient to make a qualitative sep
ration of equilibrium states into ‘‘short-lived’’ states, whic
spontaneously decay, and ‘‘long-lived’’ states, which rem
stable for as long as we choose to extend the MD calc
tions. The practical matter is that our ability to gather eq
librium data is limited by the lifetime of short-lived state
and hence our ultimate data for these states is less pre
than for the long-lived states. In this work, we will invest
gate the properties of all the equilibrium states of the syst
which we will call simply ‘‘states.’’ Mountain and Basu@20#
made similar observations regarding potential energy p
teaus and spontaneous transitions to lower-energy states~re-
ferred to as crystal nucleation in that work! for quenched Rb.

Most of the states we observed are metastable. If an o
nal state spontaneously decays to a new state, during
evolution, then the original state is metastable with respec
the new state. Absolute stability is much more difficult
establish, but for the present purposes it is not necessa
do so. Since it is useful to have available a set of crystall
states, for comparison with the amorphous states, we
apply our computational techniques to the crystalline b
states at various temperatures. Then, among the states
sidered here, the stable ones are as follows: the bcc state
T50 to around 350 K; a two-phase region from 350 to 3
K; and liquid above 371 K.

B. Energies of the states

States are characterized by the time-averaged pote
and kinetic energies per particle, denoted, respectiv
^F/N& and ^K/N&, where^K/N& is equivalent toT by Eq.
~1.5!. For all the states we generated by one or m

FIG. 2. The potential energy per particle as a function of M
iterations for 1, 100, and 20 000 quenches from the liquid state.
random state is short lived during the MD run containing 1
quenches. The final states reached, in all three runs, are long l
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quenches from the liquid state, forN5500, 1000, and 3000
^F/N& is plotted versuŝK/N& in Fig. 3. The exception is
that a number of very-low-temperature states are indica
merely by their range of̂F/N&, since on this plot̂ K/N&
'0 for those states. A series of quenches moves the sy
down the^F/N& axis, at ^K/N&50. Then during the MD
run, F1K is constant, so a spontaneous change of s
proceeds along a 45° line in Fig. 3. For illustration, the p
is indicated for a calculation comprising 100 quenches fr
the liquid, followed by an MD run during which a spontan
ous decay occurs. Figure 3 also shows the data for the
states.

In Fig. 3, the states reached by quenching from the liq
fall into clearly separated upper and lower groups. In Fig
^F/N& versus temperatureT is plotted for states in the uppe
group, together with liquid states, and intermediate sta
obtained by cooling less than one full quench from the l
uid. Since the data of Fig. 4 conform to a single curve,
will include all these states under the designation of the
per group. The significant properties we observed for
states in the upper and lower groups are as follows.

First, the upper group states lie on a single line for allN,
with very little scatter~Fig. 4!. Second, these upper grou
states are stable at high temperatures, being the liquid st
but are only metastable relative to the lower group at low
temperatures. Third, in the overwhelming majority of o
calculations, following quenches from the liquid, the syst
first came into equilibrium in an upper state. Fourth, alo
the curve of Fig. 3, upper states satisfy the incremental r

FIG. 3. ^F/N& vs ^K/N& for the random, symmetric, and bc
states. The small hatch marks on the^F/N& axis show the spread
^F/N& obtained for 15 different valleys atT'0.
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tion d^ F/N&'d^K/N&, implying oscillations of the system
within nearly harmonic many-particle valleys. Fifth, at th
same mean kinetic energy, the lower group states hav
much lower mean potential energy and show significant s
ter about a single line~Fig. 3!. Sixth, there is a temperatur
window T1,T,T2 , such that when the system arrives at
upper state for temperatures outside the window, it st
there, but when the system arrives at an upper state for t
peratures within the window it subsequently transitions to
lower state. Our findings, forN5500, 1000, and 3000 ar
T1'35 K and T2'200 K. Noticeably different values o
T1 andT2 might be found either for much longer MD runs
or for much larger systems, than were studied here.
short-lived upper group states within the window are oft
stable long enough to obtain respectable equilibrium d
say for 104 iterations.

We now provide an interpretation of these results wh
appears justified, in view of the conjectures of liquid dyna
ics theory~summarized in Sec. I!. At the heart of this inter-
pretation is the existence of the two classes of structu
random and symmetric@1#.

For states in the upper group, the system moves prima
in random valleys, since this group has higher potential
ergy than the lower group, at the same kinetic energy~Fig.
3!. Since the quenched liquid nearly always comes to eq
librium ~short lived or long lived! in the upper group, the
random valleys apparently cover themajority of configura-
tion space sampled by the liquid. The continuity of the upp
states with the liquid states~Fig. 4! suggests the random
valleys dominate the statistical mechanics of the liquid.
nally, the random valleys are approximately harmonic.

For states in the lower group, the system moves prima
in symmetric valleys, where the remnant symmetry is
sponsible for lowering the potential relative to the upp
group. In principle, symmetric states exist from the low
branch shown in Fig. 3, down to the crystal states. For
ample, microcrystalline bcc states should lie just sligh
above the single-crystal bcc states shown in the graph. H
ever, the complete range of symmetric states is not acces
in our calculations, due to limitations arising from the pe
odic boundary conditions and the small system size. Furt
we cannot dismiss the possibility that symmetric states e

FIG. 4. ^F/N& vs the temperatureT for the upper~random!
states. The melting temperature for this potential isT5371 K.
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that lie above the symmetric branch shown in Fig. 3,
though they were never observed by us.

These interpretations are consistent with the conjectu
of liquid- dynamics theory. Henceforth, we will refer to th
upper group as the random states, and the lower group a
symmetric states. In the following paper we will use t
calculated pair distribution functions, interatomic angu
distributions, and other geometric measures among n
neighbors, to investigate the symmetry properties of the r
dom and symmetric states.

C. Mean square displacement

In Sec. IV, the mean square displacement will provide
precise measure of the system motion in equilibrium sta
Here, we want to use this function in a more qualitative w
For general nonequilibrium processes, the mean square
placementd(t,t0) is

d~ t,t0!5
1

6N (
K

@rK~ t!2rK~ t0!#2. ~2.2!

If for a period of time during an MD run, the system mov
only within a fixed small region of configuration space, t
fluctuating time signald(t,t0) has a constant mean valu
during that period.

An example is shown in Fig. 5, where from the liqu
state, a series of 800 quenches, followed by an MD run,
started att050. The kinetic and potential energies, as well
the mean square displacement, are shown for the same
culation. One can see the progress of the system ene
during the quenches, during the approach to equilibriu
while the system is in an equilibrium state, and when it
moving between states. Exactly the same processes ca
seen in the curve ofd(t,t0) in Fig. 5. d(t,t0) adds two im-
portant pieces of information, however. First that in the eq
librium states achieved in Fig. 5,d(t,t0) maintains a con-
stant mean, implying that the motion of the system
confined to a small region of configuration space, and s
ond, when the system spontaneously transitions from
equilibrium state to another, it actually moves some dista
in configuration space.

In Sec. III, we will concentrate on very-low-temperatu
states. A crucial property of these states, as revealed by
graphs ofd(t,t0) versus time, is that they are confined to
very small region of configuration space. This is not a pro
erty of all equilibrium states, but of only a subset of them,
will be clarified in Sec. IV.

III. PROPERTIES OF THE MANY-PARTICLE
POTENTIAL VALLEYS

A. Local dynamical matrix

We define the local dynamical matrix as the custom
dynamical matrix from lattice dynamic theory, but evaluat
at any point on the potential surface. The particles are
beledK51, . . . ,N, Cartesian components arei 5x,y,z, and
the combined indexK,i is b51, . . . ,3N. Cartesian compo-
nents of the particle positions arer b , and the second-orde
or harmonic potential coefficients at any spatial location
-
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Dbb85
]2F

]r b ]r b8

. ~3.1!

The elementsDbb8 form the real symmetric 3N33N lo-
cal dynamical matrix, where ‘‘local’’ expresses the depe
dence on location. This matrix is diagonalized by a real
thogonal transformation, to yield the real eigenvaluesM vl

2 ,
for l51, . . . ,3N. When the dynamical matrix is evaluate
at a local potential minimum, as in lattice dynamics theo
the vl are frequencies of the normal modes of vibration

FIG. 5. The kinetic energy per particle~top!, potential energy
per particle~middle!, and mean square displacement~bottom! for an
N5168 particle system that was initiated by an 800 iterat
quench from the liquid state.
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the N-particle system. In the more general case conside
here, the local eigenvaluesM vl

2 remain an important char
acteristic of the potential surface, since they measure
local curvature in 3N orthogonal directions.

For a translationally invariant system, three of the d
namical matrix eigenvalues represent uniform translati
and hence vanish. In our MD calculations, the three ‘‘zer
eigenvalues are more than 10 orders of magnitude sm
than the smallest of the remaining eigenvalues. The rem
ing 3N23 eigenvalues are called ‘‘nonzero,’’ and can
either positive or negative. When taking averages over
spectrum, the zero eigenvalues are always omitted. For
ample, thenth moment of the frequency distribution, de
noted^vn&, is defined by

^vn&5
1

3N23
( 8
l

vl
n , ~3.2!

where(l8 is over the 3N23 nonzero frequencies.
We now examine the many-particle potential surfa

within single valleys, hence it is necessary to eliminate
intervalley diffusive motion from the MD system. We do th
by analyzing the system at a sufficiently low temperature t
it moves entirely within a single valley. All the analysis o
the present section is done for states where the system
mains in a single valley during an MD run, and one by o
many different valleys are examined.

B. Stability of the random valleys

After repeated quenches from the liquid, the system
rives at a low-temperature long-lived random state. Follo
ing 20 000 quenches, and~very! long MD runs, for example,
the system comes to equilibrium at approximately 10 K, a
remains in this state for as long as we continue the MD r
Further, the mean square displacement tells us that the
tem is localized to a small region of configuration space.
suspect that the system is moving in a single random val
and will prove this conjecture in Sec. IV. Meanwhile, w
would like to determine whether or not this random valley
stable. Stability would be proved if we could move the sy
tem to the valley bottom, i.e., the equilibrium configurati
where all forces vanish, and there evaluate the dynam
matrix, and find that all its eigenvalues are positive. Unf
tunately, as long as we are limited to using numerical pro
dures, we can never place the system exactly at that con
ration, hence we can never prove stability. We shall have
be satisfied with establishing a preponderance of nume
evidence for stability.

Figure 6 shows representative curves of the system po
tial F along a single normal coordinateq. An N-particle
potential valley is stable if, and only if, the potential is stab
in all 3N23 nontranslational normal coordinates. The pote
tial in Fig. 6~a!, has zero slope and zero curvature atq0 , and
is unstable. If our system contains such a potential in so
direction, then under continued quenches and MD runs,
things will happen: First the system will eventually move o
to the right, away fromq0 , and second, the system potent
will decrease belowF0 , having no apparent lower bound
On the other hand, when a local measurement of the sys
eigenvalue is performed, this normal mode will yield a,
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spectively, positive or negative eigenvalue, if the system is
the left or to the right of the equilibrium pointq0 . Next
consider the potential curve shown in Fig. 6~b!. It is stable,
but the curve has inflection points atq1 andq2 , with nega-
tive curvature betweenq1 andq2 . If the system has energ
below F1 in this mode, a measurement of the local eige
value will always yield a positive result. If the system h
energy betweenF1 andF2 in this mode, a measurement o
the local eigenvalue will yield a positive or negative resu
depending on whether the system is to the left or to the ri
of q1 . Finally, if the system has energy greater thanF2 in
this mode, the eigenvalue will be found sometimes posit
and sometimes negative, but less often negative as the
tem energy increases aboveF2 . In any case, once the syste
is trapped within this valley, then under continued quenc
and MD runs it will remain in this valley, and while th
energy can only decrease, it is bounded below byF0 . Our
conclusion from this discussion is~a! the system can exhibi
all positive eigenvalues when it is in an unstable valley,~b!
negative eigenvalues can appear for a stable valley, and~c!
the strongest numerical evidence for stability is the freez
of the system location and energy, under continued quenc
and MD runs.

Our procedure is to start with a random state, at say 10
and continue to cool with quenches, interspersed with M
runs, for a total on the order of 105 quenches and 105 to 106

MD iterations. During each MD run, the kinetic energ

FIG. 6. Representative projections of the many-body poten
F along a single normal coordinateq. The potential inA(B) illus-
trates the case of an unstable~stable! valley.
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equilibrates, so we can continue to use temperature to c
acterize the states reached.

We find the following results. The potential of the syste
converges towards a minimum value; upon continu
quenching thedecreasein the potential approaches a valu
that is essentially zero. Consistent with this, the mean sq
displacement demonstrates that the system remains con
to a small region in configuration space, and the lower
temperature, the smaller the region. These results hold w
out fail for every random state we studied (N5500, 1000,
and 3000!. We conclude that the low-temperature rando
valleys are stable.

Some details of these calculations are of interest. F
upon quenching from the equilibrium liquid, the system
ways became trapped in a stable random valley, forN
5500, 1000, and 3000. However, for one such run for
very small 168-particle system, during a series of quenc
from the liquid, the system potential merely paused at
level of a random state, and then moved down to the leve
a symmetric state. This result suggests that unstable ran
valleys might always be present, but will have no statisti
significance except at very smallN. Second, upon samplin
the eigenvalue spectrum during MD runs, we do find ne
tive eigenvalues, whose number decreases as the tempe
decreases, and we find all positive eigenvalues below a
tain temperature, for each valley. However, this alone is
strong evidence of stability, as noted in the discussion of F
6. On the other hand, the fluctuations of the eigenval
provide insight into the small-scale nature of the poten
surface, as will be discussed shortly.

We made a set of accurate measurements for ten diffe
random valleys, five each for 500- and 1000-particle s
tems. In each case, the minimum potential reached,
maintained throughout subsequent quenches and MD run
the static structure potentialF0 . For all the random valleys
F0 lies in a very narrow range, with mean and varian
given by

F0 /N520.013 5260.000 02 Ry/particle. ~3.3!

We are not able to find any statistically meaningfulN depen-
dence in our data forF0 , although in keeping with the pre
diction of liquid-dynamics theory, we presume the width
the F0 distribution goes to zero asN→` @1#.

C. Eigenvalue spectrum of the random valleys

Let us now inquire about the overall shape of the rand
valleys. This shape is measured in the harmonic~curvature!
approximation by the eigenvalue spectrum. We therefore
amine the eigenvalue spectrum calculated at well-separ
instances during low-temperature MD runs, and for
present analysis, we take only examples where all eigen
ues are positive. This condition is satisfied by all the rand
states we studied, at temperatures of 1023 K and below.
The most notable property from the outset is that the ove
eigenvalue spectrum for random valleys is universal. It
practically the same for different locations in a given valle
for different valleys; and for differentN. The eigenvalue
spectra for five different valleys are shown in Fig. 7. The
spectra deviate from each other by an amount not more
the pen width of the drawn curves.
ar-

d

re
ed
e
h-

t,
-

e
es
e
of
om
l

-
ture
r-
t
.
s
l

nt
-

nd
, is

e

f

x-
ed
e
l-

ll
s
;

e
an

To obtain an approximate but simple representation of
complete eigenvalue spectrum, we will evaluate certain o
moments. In these terms, we can bring precision to our c
parison of different random valleys. Three moments t
have special importance in the classical statistical mecha
of harmonic valleys are the22, 0, and12 moments of the
frequency spectrum. These moments are expressed in t
of three characteristic temperaturesQn ,n522,0,2, defined
as follows:

kB Q225@ 1
3 ^~\v!22&#21/2, ~3.4!

lnkBQ05^ ln\v&, ~3.5!

kBQ25@ 5
3 ^~\v!2&#1/2, ~3.6!

where^ f (v)& denotes an average off (v) over the frequency
spectrum, as in Eq.~3.2!. We note thatQ22 is extremely
sensitive to small variations in the lowest frequenciesvl ,
i.e., in the lowest dynamical-matrix eigenvaluesM vl

2 .
For 500- and 1000- particle systems, at temperature

1023 K down to 1026 K, we studied the fluctuations in
Qn . The fluctuations as the system moves within a sin
random valley are quite small, while fluctuations from vall
to valley are larger. We expect the intervalley fluctuations
approach zero asN→`, and the statistics we have forN
5500 and 1000 do support this expectation. For each of
central moments of the harmonic frequency spectrum,
mean and variance over our reference set of ten diffe
random valleys, five each withN5500 and 1000, are given
by

Q25154.060.1 K, Q0598.760.1 K,
~3.7!

Q22511464 K.

These results may be considered to represent a universa
dom valley, evaluated at the structure, i.e., at the valley b
tom.

FIG. 7. EigenvaluesMvl
2 , as a function ofl, for five different

random valleys. These spectra were calculated at low tempera
(1023 K or less! where all the eigenvalues are positive.
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D. Negative eigenvalues and anharmonicity

Consider a stable valley the equilibrium configuration
which is given by the set of coordinatesRb , for b
51, . . . ,3N. When the system is in this valley, the partic
position coordinatesr b are conveniently expressed in term
of the displacementsub , defined by

r b5Rb1ub . ~3.8!

Within the valley, the potential can be written

F~$r b%!5F01FH1FA , ~3.9!

where the structure potential isF05F($Rb%), the harmonic
potential is

FH5
1

2 (
bb8

Fbb8 ub ub8 , ~3.10!

and the anharmonicity is expressed byFA . The potential
coefficientsFbb8 constitute the dynamical matrix at equilib
rium, and the transformation that diagonalizes this ma
putsFH in the form

FH 5
1

2 (
l

M vl
2 ql

2 , ~3.11!

where each normal mode coordinateql is a linear combina-
tion of theub .

Now consider our MD system, in equilibrium, movin
only within this single stable valley, and suppose the anh
monicity is such thatF has the shape shown in Fig. 6~b!, for
one or more of the normal coordinatesql . If the system is at
very low temperature, the motion covers only a very sm
region near the valley bottom, and the eigenvalue, for
mode, is always positive. If the temperature is increased,
system moves over a larger portion of the valley surface,
we expect to find at first an occasional negative eigenva
then more negative eigenvalues, as the temperature cont
to increase. This is indeed our qualitative finding, but
details are rather surprising.

Let n2 be the number of negative eigenvalues in a giv
calculation of the eigenvalue spectrum, and for an MD r
with the system in an equilibrium state, let^n2& be the av-
erage for a number of uncorrelated determinations ofn2 . To
remove the leadingN dependence, we define the mean fra
tion of negative eigenvalues as

f 25
^n2&

3N23
. ~3.12!

Our results for random valleys are as follows. First, for
given random valley, negative eigenvalues begin to appe
very low temperature, in the range of 1023–1021 K, and
the curve of f 2 versusT is irregular, not a smooth curve
This irregular temperature dependence presumably re
from a few small low-lying ‘‘bumps’’ in the potential curve
similar to that illustrated in Fig. 6~b!. Second, at modes
temperatures, of say 10 K or less, thef 2 data are signifi-
cantly different from one random valley to another. But f
such temperatures,f 2 is on the order of 1023 or less, hence
f 2 measures a microscopic property of each valley, and s
f

x

r-

ll
is
e
d
e,
ues
e

n
n

-

at

lts

ch

a property should, by all means, vary from valley to valle
Hence the picture emerges that the anharmonic potentialFA
for random valleys contains a contribution that is micr
scopically bumpy, and that varies from valley to valley. O
the other hand, asT increases, and correspondinglyf 2 in-
creases, a common trend begins to emerge for the ran
valleys. Our results forf 2 versusT for two random valleys
are graphed in Fig. 8.

A further perspective is gained by doing the same analy
for the bcc crystalline states. For our system, the bcc st
ture is stable, hencen250 for the bcc state atT50. Upon
heating the crystal to states at higher temperatures,f 2 re-
mains zero up to 52 K, but theref 2 departs from zero, and
increases as temperature continues to increase. The cur
shown in Fig. 8. The stability of the bcc valley can be a
preciated from the fact that the bcc states remain stabl
our MD calculations up to temperatures around 350
Hence, the bcc results provide an excellent example of
situation anticipated in our discussion of the stability of v
leys, namely of the appearance of negative eigenvalues f
system moving in a single stable anharmonic valley. Furth
the bcc curve off 2 versusT is smooth, suggestingFA for
the bcc crystal is a smooth function, in contrast to the mic
scopically bumpy character ofFA for the random valleys.

E. Crystal and symmetric valleys

Because we already have an extensive understandin
the bcc valley, the bcc states will often serve us as a re
ence point in our present work. For the system we are stu
ing, accurate values of the harmonic parameters of the
potential valley are as follows:

F0520.014 415 Ry, Q25151.4 K,
~3.13!

Q0599.65 K, Q225121.4 K.

These values are in accurate agreement with much ea
work on the lattice-dynamic properties of crystalline sodiu
@14,17#.

Of the noncrystalline valleys we observed~random and
symmetric!, the random valleys are apparently the only s

FIG. 8. The mean fraction of negative eigenvalues for lo
temperature random states and for bcc states. The curves are fo
purpose of guiding the eye.
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nificant contributors to the liquid statistical mechanics, a
for that reason we have placed major emphasis on unco
ing the properties of the random valleys. Still, the symme
valleys, through their contrasting properties, will help us
further understand the random valleys. In addition, the sy
metric valleys are expected to have a role in the descrip
of amorphous solids.

Though our investigation of symmetric valleys is far fro
exhaustive, the following properties are established. F
the symmetric valleys we have found are stable. Seco
different symmetric valleys exhibit nominal differences
their macroscopic average properties, specifically in th
values ofF0 and Qn for n522,0,2. This difference is in
contrast to the accurate macroscopic uniformity of the r
dom valleys. Finally, on increasing the temperature fr
very low values, negative eigenvalues begin to appea
rather low temperatures for symmetric valleys. From this
conclude that the symmetric valleys, like the random on
have a microscopically bumpy anharmonic potential.

IV. DIFFUSIVE AND NONDIFFUSIVE MOTION

A. Diffusing states

In the last section, we studied the shape of the poten
surface in stable anharmonic valleys. We now take the
step in studying the motion of the system, when it is confin
to a single valley, and when it moves from valley to valle
in various equilibrium states. For this purpose, we study
mean square displacement, defined in Eq.~2.2!.

For equilibrium states,d(t,t0) depends only ont2t0 , so
we use the notation

d~ t !5
1

6N (
K

@rK~ t !2rK~0!#2. ~4.1!

In general form,d(t) increases from zero att50, then fluc-
tuates about linear dependence ont. The initial increase from
zero is the ‘‘ballistic’’ regime, lasting less than half of
mean vibrational period. We fit the linear regime to a strai
line DI1DMt, defining the interceptDI and the slopeDM .
In statistical mechanics, one shows@21# that DM is the self-
diffusion coefficient D. However, most of our states ar
metastable, hence they do not sample all of configura
space, so we use the subscriptM to indicate thatDM mea-
sures the self diffusion only within a metastable state.

Figure 9 showsd(t) for a set of random states, includin
the liquid. The curves show a uniform decrease in slope
temperature decreases. Our interpretation of Fig. 9 is tha
system is moving among random valleys, for the liquid a
random states alike, but the intervalley motion becom
slower as temperature decreases. This behavior is made
precise in Fig. 10, whereDM versusT is plotted for the
random states shown in Fig. 9, plus several low
temperature states. Figure 10 shows, by a different meas
the same property we observed in Fig. 4, that the entire
lection of randomand liquid states conform to a singl
temperature-dependent behavior.

States havingd(t) curves such as those shown in Fig.
with DM.0, are called diffusing states. From Fig. 10, t
random states are diffusing states forT*100 K.
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It is of interest to compare our calculation ofDM for the
liquid state with the experimentally measured self-diffusi
in liquid sodium. From a set of 11 calculations atT
5401 K, we find DM55.8060.20(1025 cm2/s). Experi-
ment for liquid sodium at the same temperature and 1
pressure, where the actual volume is 280a0

3/atom, compared
to our present volume of 278a0

3/atom, gives D
55.3(1025cm2/s) @22#. The discrepancy is in the range to b
expected from combined errors of theory and experimen

B. Nondiffusing states

At temperaturesT&100 K, the random states exhib
DM50, at least to the accuracy available in our MD calc
lations. States withDM50 are called nondiffusing states
Figure 11~a! showsd(t) for a set of nondiffusing random
states, while bcc states, for comparison, are shown in
11~b!. In curves such as these, we fitd(t), after its initial rise

FIG. 9. The mean square displacement for the liquid stateT
5390 K), and for a set of diffusing random states (149 K<T
<356 K).

FIG. 10. Temperature dependence of the slopeDM , of thed(t)
curve for diffusing and nondiffusing (DM50) random states as
function of temperature. The size of the error bar on the last d
point is representative of the size of the uncertainty for all
diffusing states. Uncertainties inDM for the nondiffusing states
range from 1023 at 100 K to 1025 at 1 K, in the units graphed.
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from zero, to a horizontal line. From this line we get t
intercept value, which for nondiffusing states is the lon
time time average ofd(t):

DI5^d~ t !&. ~4.2!

For completeness, on our graph ofDM versusT, the random
states for which we observedDM50 are also indicated in
Fig. 10.

The propertyDM50 tells us the system is trapped with
some region of configuration space. In the present case
suspect the system is trapped in a single valley in the po
tial energy surface. This hypothesis can be tested in the
monic approximation, which should be quite accurate.
motion in a single valley, particleK has equilibrium position
RK , and instantaneous positionrK(t)5RK1uK(t). Then
^d(t)& is expressed from Eq.~4.1!, and is evaluated as fol
lows, for t beyond the ballistic regime.

^d~ t !&5
1

6NK (
K

@rK~ t !2rK~0!#2L ,

5
1

6NK (
K

@uK~ t !2uK~0!#2L ,

FIG. 11. The mean square displacementd(t) for three nondif-
fusing random and bcc states.
-

we
n-
r-
r

5
1

6N K (
K

@uK
2 ~ t !1uK

2 ~0!#L ,

~4.3!

where the last line follows because the cross ter
uK(t)•uK(0) average to zero. Now ifN→`, the two sums
become equal, so that at finiteN they differ by a term of
relative orderN21, which we neglect, and thus

^d~ t !&5
1

3N K (
K

uK
2 ~ t !L . ~4.4!

Our system is constrained to zero center-of-mass mot
which means(K uK(t)50. We indicate the constrained su
with a prime, as(K8 , and transform to normal coordinate
where(l8 means to omit the three modes of uniform tran
lation, havingvl50. Then Eq.~4.4! becomes

1

3N23 K (
K

8 uK
2 ~ t!L 5

1

3N23 K (
l

8 ql
2~ t !L . ~4.5!

With the system in equilibrium within a single harmon
valley, we have

^ql
2~ t !&5

kBT

Mvl
2
, l51, . . . ,3N23. ~4.6!

Hence^d(t)& contains the22 moment of the frequency dis
tribution, ^v22& as defined in Eq.~3.2!, and this can be
expressed in terms of the characteristic temperatureQ22 ,
from Eq. ~3.4!, to yield the final result

^d~ t !&5
3\2T

MkBQ22
2

. ~4.7!

To make a systematic study of nondiffusing states,
brought the system to equilibrium states on the random, s
metric, and bcc branches, using both heating and coo
procedures. As noted in Sec. II, the random states are
lived for T&35 K. Since the random valleys have a unive
sal harmonic shape, and, in particular, a universal value
Q22 , then all random valleys should conform to a sing
theoretical expression forDI , namely, that given by Eq
~4.7! with Q225114 K. Inserting the numbers gives fo
random valleys

DI~a0
2!50.001 74T~K!. ~4.8!

Figure 12 shows our MD results forDI , evaluated from
thed(t) curves in Fig. 11~a!, and additional such curves, fo
random states at temperatures up to 35 K. The data of Fig
are obtained from two different random valleys, forN
5500 and 1000, and hence further demonstrate the un
mity of different random valleys in their macroscopic pro
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erties. Notice that each point plotted in Fig. 12 represen
separate random state, hence each point is independent
firmation of the theoretical expression, Eq.~4.7! or ~4.8!.
From the graph of Fig. 12, there can be no doubt that,
every nondiffusing random state we studied, the system
moving entirely within a single nearly harmonic random v
ley.

Again as noted in Sec. II~b!, random states above 35
generally live long enough to obtain respectable MD da
We examined such states at temperatures up to 88 K,
found the same behavior as described above, but with la
scatter in the results, namely,DM50, andDI agrees with the
theoretical single-harmonic valley expression@Eq. ~4.7! or
~4.8!#.

For the bcc valley, Eq.~3.13! lists Q225121.4 K, and
this together with Eq.~4.7! gives the harmonic result

DI~a0
2!50.001 534T ~K!. ~4.9!

Graphs ofd(t) for the bcc states, similar to the ones show
in Fig. 11, haveDM50, and yield the set ofDI plotted in
Fig. 13. These values ofDI are in excellent agreement wit
Eq. ~4.9! at low temperatures, and the slight drift ofDI be-
low Eq. ~4.9! at higher temperatures is presumably a resul
anharmonicity.

We also made a series of calculations for a single sy
metric valley that hasQ225118 K. Up to 212 K, the
graphs ofd(t) have DM50. Here again the values ofDI
obtained fromd(t) are in excellent agreement with th
single-harmonic valley equation, Eq.~4.7!, as shown in Fig.
13, where the theoretical curve is

DI~a0
2!50.001 62T ~K!. ~4.10!

FIG. 12. InterceptsDI for nondiffusing random states. The the
oretical curve labeled THEORY is the harmonic approximat
given by Eq.~4.8!. The inset shows the highly linear behavior
DI , and its good fit to the harmonic theory, in the smallT regime.
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Our conclusion at this point is that for every state havi
DM50, random, symmetric, or crystalline, the system mov
within a single nearly harmonic potential valley.

V. SUMMARY OF CONCLUSIONS

We have used MD calculations to probe that part of
many-particle potential surface that is visited by the mo
atomic liquid. We have used techniques of cooling and he
ing the system, and MD runs to establish equilibrium. O
calculations were done for a system that is an accurate
resentation of metallic sodium, at the density of the liquid
melt, and withN5432 for bcc states, andN5500, 1000, and
3000 for noncrystalline states. Our conclusions are organ
into five major points, as follows.

~1! The potential surface is composed of a large num
of stable nearly harmonic valleys. We should emphasize
every valley we examined, without exception, was found
be both stable and approximately harmonic. Stability
shown, to numerical accuracy, by finding that the syst
freezes to a configuration that is permanent under contin
quenching and MD runs. The nearly harmonic character
the valleys is indicated by two observed properties. First, t
the slope of̂ F/N& versuŝ K/N& is approximately unity for
the random states, the symmetric states, and the bcc stat
shown in Fig. 3, strongly suggests that the system mo
among nearly harmonic valleys in each of these groups
states. This same property of the liquid states, expresse
the form that the ion motional specific heat is approximat
3kB per atom, was taken as evidence of nearly harmo
valleys in our original formulation of liquid dynamics@1#.
Second, when the system is moving within a single valley
indicated by the propertyDM50, the time average of the
mean square displacement is in accurate agreement with
monic theory, Eq.~4.7!, and this is strong evidence that th
particular valley in question is nearly harmonic. Figure
shows this property for random valleys to 35 K, and t
same result holds with a little more scatter~because the state
are short lived! to approximately 100 K. Figure 13 shows th
nearly harmonic property for the bcc valley to 143 K, and f

FIG. 13. Same as Fig. 12 but for nondiffusing bcc and symm
ric states. The theoretical curves labeled THEORY~BCC! and
THEORY ~SYM! are the single-valley harmonic approximation f
bcc @Eq. ~4.9!#, and for a single symmetric valley@Eq. ~4.10!#.
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a single symmetric valley to 212 K.
~2! Stable valleys have previously been observed in co

puter simulations, and have been classified as crystallin
amorphous@3–10#. Here we find the amorphous class is fu
ther subdivided into two groups, which we call random a
symmetric. To express the properties of these valleys,
recall Eqs.~3.8!–~3.11!, where the potential surface is ex
panded about the minimum of a given valley, in the fo
F5F01FH1FA .F0 is the potential at equilibrium~at the
structure!, FH is the harmonic potential, of second order
displacements from equilibrium, and diagonalized to a s
of squares of normal coordinates, andFA is the anharmonic
potential. An important measure ofFH is the spectrum of its
eigenvalues, and three key moments of this spectrum
contained in the three characteristic temperaturesQn ,n5
22,0,2, which we studied extensively.

The important properties of the random valleys are lis
in three statements. First, they are macroscopically unifo
i.e., they all have virtually the same value ofF0 , virtually
the same eigenvalue spectrum ofFH , and they all have
small anharmonicity. Second, on the microscopic level,FA
has a contribution that is irregular at very small scale, a
that differs from one random valley to another. Third, t
random valleys cover by far the major portion of configu
tion space, hence they dominate the statistical mechanic
the liquid state.

The important properties of symmetric valleys are m
conveniently listed by making comparisons with the rand
valleys. First, the symmetric valleys lie at lower potenti
i.e., they have a lower value ofF0 , as shown in Fig. 3, and
they are not macroscopically uniform, but instead hav
noticeable scatter in their potential parametersF0 and Qn .
These properties presumably result from some remnan
crystalline symmetry, present in symmetric valleys but no
random ones. Second, on the microscopic level,FA in sym-
metric valleys also has a contribution which is irregular a
very small scale. Third, the symmetric valleys cover a re
tively small portion of configuration space, hence they do
contribute to the statistical mechanics of the liquid state.

~3! The equilibrium states of our system, from zero te
perature up to and including the liquid states, conform to
above description of the potential surface. We make the
lowing interpretation of the observed motion of our syste

For T&35 K, random states are long lived, and in ea
random stateDM50, and the system moves within a sing
random valley. The system has not enough energy to
over the lowest ridge enclosing its valley within the time
our MD run. We presume the systemwould get out of its
random valley, if we could continue the MD run for a suf
cient ~very long! time.

For 35 K&T&100 K, random states are short-live
states and decay into symmetric states, though while the
tem is in a random state it showsDM50, and it appears to
move within a single random valley. In fact, we presume
system is actually moving from one random valley to a
other, but at such a slow rate that the motion cannot
distinguished in our MD data, until the system arrives a
symmetric valley, where it loses potential energy and
comes trapped.

For 100 K&T&200 K, random states are short live
and decay into symmetric states, and while the system is
-
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random state it showsDM small but nonzero, indicating the
system is moving among random valleys. The system c
tinues this motion until it encounters a symmetric valle
where it loses potential energy and becomes trapped.

For T*200 K, random states are long lived and sho
substantial diffusion~largeDM). We presume the system i
moving rapidly among potential valleys, both random a
symmetric, and the system has sufficient energy that it c
not become trapped in a symmetric valley. This descript
includes the liquid states atT.371 K.

For 0 K<T&200 K, symmetric states are long lived
and in each symmetric stateDM50, and the system move
within a single symmetric valley. Some irregular moveme
among valleys, which we have not yet analyzed, takes p
in symmetric states above 200 K.

In bcc states,DM50 and the system moves within
single bcc valley. This was verified by our MD calculation
to 143 K, and presumably continues to hold to approximat
350 K.

~4! In order to construct liquid dynamics theory, in such
form that the partition function and free energy could ac
ally be evaluated, it was necessary to make a simple
physically realistic model of the many-particle potential su
face @1#. The above description of the potential surface,
sulting from the present extensive computer calculatio
confirms the simple liquid-dynamics model in excruciati
detail. This means further that the universal-random-val
potential parameters, specificallyF0 and Qn for n
522,0,2, as calculated here for metallic sodium at the d
sity of the liquid at melt, are the essential parameters for
liquid-dynamics theory of sodium at that density. We cou
imagine that this same procedure will be successful in ev
ating the liquid-dynamic parameters for other elements
well.

~5! The present calculations allow us to test two pred
tions of liquid-dynamics theory@1#. The first prediction,
based strongly on the universality of the constant-volu
entropy of melting for normal melting elements, is that t
characteristic temperatureQ0 for the crystal, and for the ran
dom valleys, should be nearly the same at the same den
say, within 5%. Here we findQ0(bcc)599.65 K, and
Q0(random)598.7 K, in remarkable confirmation of th
prediction.

The second prediction, based on approximating both c
tal and random valleys as purely harmonic, is thatF0 for
random valleys should lie aboveF0 for the crystal at the
same density, by the amountTmDS, where DS is the
constant-volume entropy of melting. Experiment for sodiu
givesTmDS51.7 mRy/atom at density of the liquid at me
@23#. On the other hand, from our present calculations~see
Fig. 3!, F0 ~random! lies above F0 ~bcc! by
0.92 mRy/atom. The sizable error of the liquid-dynam
prediction is due to the anharmonicity of the random sta
as revealed in the graph of^F/N& versusT in Fig. 4. It
remains to be learned whether such large anharmonicit
usual or exceptional among the elements.
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